com.cloudera.sparkts.models

RegressionARIMA

object RegressionARIMA

This model is basically a regression with ARIMA error structure see https://onlinecourses.science.psu.edu/stat510/node/53 https://www.otexts.org/fpp/9/1 http://robjhyndman.com/talks/RevolutionR/11-Dynamic-Regression.pdf The basic idea is that for usual regression models Y = B*X + e e should be IID ~ N(0,sigma2), but in time series problems, e tends to have time series characteristics.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. RegressionARIMA
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. def fitCochraneOrcutt(ts: Vector[Double], regressors: DenseMatrix[Double], maxIter: Int = 10): RegressionARIMAModel

    Fit linear regression model with AR(1) errors , for references on Cochrane Orcutt model: See https://onlinecourses.science.psu.edu/stat501/node/357 See : Applied Linear Statistical Models - Fifth Edition - Michael H.

    Fit linear regression model with AR(1) errors , for references on Cochrane Orcutt model: See https://onlinecourses.science.psu.edu/stat501/node/357 See : Applied Linear Statistical Models - Fifth Edition - Michael H. Kutner , page 492 The method assumes the time series to have the following model

    Y_t = B.X_t + e_t e_t = rho*e_t-1+w_t e_t has autoregressive structure , where w_t is iid ~ N(0,&sigma 2)

    Outline of the method : 1) OLS Regression for Y (timeseries) over regressors (X) 2)Apply auto correlation test (Durbin-Watson test) over residuals , to test whether e_t still have auto-regressive structure 3)if test fails stop , else update update coefficients (B's) accordingly and go back to step 1)

    ts

    : Vector of size N for time series data to create the model for

    regressors

    Matrix N X K for the timed values for K regressors over N time points

    maxIter

    maximum number of iterations in iterative cochrane-orchutt estimation

    returns

    instance of class RegressionARIMAModel

  12. def fitModel(ts: Vector[Double], regressors: DenseMatrix[Double], method: String, optimizationArgs: Any*): RegressionARIMAModel

  13. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  14. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  20. def toString(): String

    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped