com.cloudera.sparkts

TimeSeriesRDD

class TimeSeriesRDD[K] extends RDD[(K, Vector)]

A lazy distributed collection of univariate series with a conformed time dimension. Lazy in the sense that it is an RDD: it encapsulates all the information needed to generate its elements, but doesn't materialize them upon instantiation. Distributed in the sense that different univariate series within the collection can be stored and processed on different nodes. Within each univariate series, observations are not distributed. The time dimension is conformed in the sense that a single DateTimeIndex applies to all the univariate series. Each univariate series within the RDD has a String key to identify it.

Linear Supertypes
RDD[(K, Vector)], Logging, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. TimeSeriesRDD
  2. RDD
  3. Logging
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TimeSeriesRDD(index: DateTimeIndex, parent: RDD[(K, Vector)])(implicit kClassTag: ClassTag[K])

    index

    The DateTimeIndex shared by all the time series.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. def ++(other: RDD[(K, Vector)]): RDD[(K, Vector)]

    Definition Classes
    RDD
  5. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  6. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  7. def aggregate[U](zeroValue: U)(seqOp: (U, (K, Vector)) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): U

    Definition Classes
    RDD
  8. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  9. def cache(): TimeSeriesRDD.this.type

    Definition Classes
    RDD
  10. def cartesian[U](other: RDD[U])(implicit arg0: ClassTag[U]): RDD[((K, Vector), U)]

    Definition Classes
    RDD
  11. def checkpoint(): Unit

    Definition Classes
    RDD
  12. def clearDependencies(): Unit

    Attributes
    protected
    Definition Classes
    RDD
  13. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  14. def coalesce(numPartitions: Int, shuffle: Boolean)(implicit ord: Ordering[(K, Vector)]): RDD[(K, Vector)]

    Definition Classes
    RDD
  15. def collect[U](f: PartialFunction[(K, Vector), U])(implicit arg0: ClassTag[U]): RDD[U]

    Definition Classes
    RDD
  16. def collect(): Array[(K, Vector)]

    Definition Classes
    RDD
  17. def collectAsTimeSeries(): TimeSeries[K]

    Collects the RDD as a local TimeSeries

  18. def compute(split: Partition, context: TaskContext): Iterator[(K, Vector)]

    Definition Classes
    TimeSeriesRDD → RDD
  19. def context: SparkContext

    Definition Classes
    RDD
  20. def count(): Long

    Definition Classes
    RDD
  21. def countApprox(timeout: Long, confidence: Double): PartialResult[BoundedDouble]

    Definition Classes
    RDD
    Annotations
    @Experimental()
  22. def countApproxDistinct(relativeSD: Double): Long

    Definition Classes
    RDD
  23. def countApproxDistinct(p: Int, sp: Int): Long

    Definition Classes
    RDD
    Annotations
    @Experimental()
  24. def countByValue()(implicit ord: Ordering[(K, Vector)]): Map[(K, Vector), Long]

    Definition Classes
    RDD
  25. def countByValueApprox(timeout: Long, confidence: Double)(implicit ord: Ordering[(K, Vector)]): PartialResult[Map[(K, Vector), BoundedDouble]]

    Definition Classes
    RDD
    Annotations
    @Experimental()
  26. final def dependencies: Seq[Dependency[_]]

    Definition Classes
    RDD
  27. def differences(n: Int): TimeSeriesRDD[K]

    Returns a TimeSeriesRDD where each time series is differenced with the given order.

    Returns a TimeSeriesRDD where each time series is differenced with the given order. The new RDD will be missing the first n date-times.

  28. def distinct(): RDD[(K, Vector)]

    Definition Classes
    RDD
  29. def distinct(numPartitions: Int)(implicit ord: Ordering[(K, Vector)]): RDD[(K, Vector)]

    Definition Classes
    RDD
  30. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  31. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  32. def fill(method: String): TimeSeriesRDD[K]

    Fills in missing data (NaNs) in each series according to a given imputation method.

    Fills in missing data (NaNs) in each series according to a given imputation method.

    method

    "linear", "nearest", "next", or "previous"

    returns

    A TimeSeriesRDD with missing observations filled in.

  33. def filter(f: ((K, Vector)) ⇒ Boolean): TimeSeriesRDD[K]

    Definition Classes
    TimeSeriesRDD → RDD
  34. def filterEndingAfter(dt: ZonedDateTime): TimeSeriesRDD[K]

    Keep only time series whose last observation is after or equal to the given end date.

  35. def filterStartingBefore(dt: ZonedDateTime): TimeSeriesRDD[K]

    Keep only time series whose first observation is before or equal to the given start date.

  36. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  37. def findSeries(key: K): Vector

    Finds a series in the TimeSeriesRDD with the given key.

  38. def first(): (K, Vector)

    Definition Classes
    RDD
  39. def firstParent[U](implicit arg0: ClassTag[U]): RDD[U]

    Attributes
    protected[org.apache.spark]
    Definition Classes
    RDD
  40. def flatMap[U](f: ((K, Vector)) ⇒ TraversableOnce[U])(implicit arg0: ClassTag[U]): RDD[U]

    Definition Classes
    RDD
  41. def fold(zeroValue: (K, Vector))(op: ((K, Vector), (K, Vector)) ⇒ (K, Vector)): (K, Vector)

    Definition Classes
    RDD
  42. def foreach(f: ((K, Vector)) ⇒ Unit): Unit

    Definition Classes
    RDD
  43. def foreachPartition(f: (Iterator[(K, Vector)]) ⇒ Unit): Unit

    Definition Classes
    RDD
  44. def getCheckpointFile: Option[String]

    Definition Classes
    RDD
  45. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  46. def getDependencies: Seq[Dependency[_]]

    Attributes
    protected
    Definition Classes
    RDD
  47. def getPartitions: Array[Partition]

    Attributes
    protected
    Definition Classes
    TimeSeriesRDD → RDD
  48. def getPreferredLocations(split: Partition): Seq[String]

    Attributes
    protected
    Definition Classes
    RDD
  49. def getStorageLevel: StorageLevel

    Definition Classes
    RDD
  50. def glom(): RDD[Array[(K, Vector)]]

    Definition Classes
    RDD
  51. def groupBy[K](f: ((K, Vector)) ⇒ K, p: Partitioner)(implicit kt: ClassTag[K], ord: Ordering[K]): RDD[(K, Iterable[(K, Vector)])]

    Definition Classes
    RDD
  52. def groupBy[K](f: ((K, Vector)) ⇒ K, numPartitions: Int)(implicit kt: ClassTag[K]): RDD[(K, Iterable[(K, Vector)])]

    Definition Classes
    RDD
  53. def groupBy[K](f: ((K, Vector)) ⇒ K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[(K, Vector)])]

    Definition Classes
    RDD
  54. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  55. val id: Int

    Definition Classes
    RDD
  56. val index: DateTimeIndex

    The DateTimeIndex shared by all the time series.

  57. def intersection(other: RDD[(K, Vector)], numPartitions: Int): RDD[(K, Vector)]

    Definition Classes
    RDD
  58. def intersection(other: RDD[(K, Vector)], partitioner: Partitioner)(implicit ord: Ordering[(K, Vector)]): RDD[(K, Vector)]

    Definition Classes
    RDD
  59. def intersection(other: RDD[(K, Vector)]): RDD[(K, Vector)]

    Definition Classes
    RDD
  60. def isCheckpointed: Boolean

    Definition Classes
    RDD
  61. def isEmpty(): Boolean

    Definition Classes
    RDD
  62. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  63. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  64. final def iterator(split: Partition, context: TaskContext): Iterator[(K, Vector)]

    Definition Classes
    RDD
  65. implicit val kClassTag: ClassTag[K]

  66. def keyBy[K](f: ((K, Vector)) ⇒ K): RDD[(K, (K, Vector))]

    Definition Classes
    RDD
  67. lazy val keys: Array[K]

  68. def lags[U](maxLag: Int, includeOriginals: Boolean, laggedKey: (K, Int) ⇒ U)(implicit arg0: ClassTag[U]): TimeSeriesRDD[U]

    Lags each time series in the RDD

    Lags each time series in the RDD

    U

    type of keys

    maxLag

    maximum Lag

    includeOriginals

    include original time series

    laggedKey

    function to generate lagged keys

    returns

    RDD of lagged time series

  69. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  70. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  71. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  72. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  73. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  74. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  75. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  76. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  77. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  78. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  79. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  80. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  81. def map[U](f: ((K, Vector)) ⇒ U)(implicit arg0: ClassTag[U]): RDD[U]

    Definition Classes
    RDD
  82. def mapPartitions[U](f: (Iterator[(K, Vector)]) ⇒ Iterator[U], preservesPartitioning: Boolean)(implicit arg0: ClassTag[U]): RDD[U]

    Definition Classes
    RDD
  83. def mapPartitionsWithIndex[U](f: (Int, Iterator[(K, Vector)]) ⇒ Iterator[U], preservesPartitioning: Boolean)(implicit arg0: ClassTag[U]): RDD[U]

    Definition Classes
    RDD
  84. def mapSeries[U](f: (Vector) ⇒ Vector, index: DateTimeIndex): TimeSeriesRDD[K]

    Applies a transformation to each time series and returns a TimeSeriesRDD with the given index.

    Applies a transformation to each time series and returns a TimeSeriesRDD with the given index. The caller is expected to ensure that the time series produced line up with the given index.

  85. def mapSeries[U](f: (Vector) ⇒ Vector): TimeSeriesRDD[K]

    Applies a transformation to each time series that preserves the time index of this TimeSeriesRDD.

  86. def max()(implicit ord: Ordering[(K, Vector)]): (K, Vector)

    Definition Classes
    RDD
  87. def min()(implicit ord: Ordering[(K, Vector)]): (K, Vector)

    Definition Classes
    RDD
  88. var name: String

    Definition Classes
    RDD
  89. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  90. final def notify(): Unit

    Definition Classes
    AnyRef
  91. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  92. def parent[U](j: Int)(implicit arg0: ClassTag[U]): RDD[U]

    Attributes
    protected[org.apache.spark]
    Definition Classes
    RDD
  93. val partitioner: Option[Partitioner]

    Definition Classes
    RDD
  94. final def partitions: Array[Partition]

    Definition Classes
    RDD
  95. def persist(): TimeSeriesRDD.this.type

    Definition Classes
    RDD
  96. def persist(newLevel: StorageLevel): TimeSeriesRDD.this.type

    Definition Classes
    RDD
  97. def pipe(command: Seq[String], env: Map[String, String], printPipeContext: ((String) ⇒ Unit) ⇒ Unit, printRDDElement: ((K, Vector), (String) ⇒ Unit) ⇒ Unit, separateWorkingDir: Boolean): RDD[String]

    Definition Classes
    RDD
  98. def pipe(command: String, env: Map[String, String]): RDD[String]

    Definition Classes
    RDD
  99. def pipe(command: String): RDD[String]

    Definition Classes
    RDD
  100. final def preferredLocations(split: Partition): Seq[String]

    Definition Classes
    RDD
  101. def quotients(n: Int): TimeSeriesRDD[K]

    Returns a TimeSeriesRDD where each time series is quotiented with the given order.

    Returns a TimeSeriesRDD where each time series is quotiented with the given order. The new RDD will be missing the first n date-times.

  102. def randomSplit(weights: Array[Double], seed: Long): Array[RDD[(K, Vector)]]

    Definition Classes
    RDD
  103. def reduce(f: ((K, Vector), (K, Vector)) ⇒ (K, Vector)): (K, Vector)

    Definition Classes
    RDD
  104. def removeInstantsWithNaNs(): TimeSeriesRDD[K]

    Return a TimeSeriesRDD with all instants removed that have a NaN in one of the series.

  105. def repartition(numPartitions: Int)(implicit ord: Ordering[(K, Vector)]): RDD[(K, Vector)]

    Definition Classes
    RDD
  106. def returnRates(): TimeSeriesRDD[K]

    Returns a return rate series for each time series.

    Returns a return rate series for each time series. Assumes periodic (as opposed to continuously compounded) returns.

  107. def sample(withReplacement: Boolean, fraction: Double, seed: Long): RDD[(K, Vector)]

    Definition Classes
    RDD
  108. def saveAsCsv(path: String): Unit

    Writes out the contents of this TimeSeriesRDD to a set of CSV files in the given directory, with an accompanying file in the same directory including the time index.

  109. def saveAsObjectFile(path: String): Unit

    Definition Classes
    RDD
  110. def saveAsTextFile(path: String, codec: Class[_ <: CompressionCodec]): Unit

    Definition Classes
    RDD
  111. def saveAsTextFile(path: String): Unit

    Definition Classes
    RDD
  112. def seriesStats(): RDD[StatCounter]

    Gets stats like min, max, mean, and standard deviation for each time series.

  113. def setName(_name: String): TimeSeriesRDD.this.type

    Definition Classes
    RDD
  114. def slice(start: Long, end: Long): TimeSeriesRDD[K]

    Returns a TimeSeriesRDD that's a sub-slice of the given series.

    Returns a TimeSeriesRDD that's a sub-slice of the given series.

    start

    The start date the for slice.

    end

    The end date for the slice (inclusive).

  115. def slice(start: ZonedDateTime, end: ZonedDateTime): TimeSeriesRDD[K]

    Returns a TimeSeriesRDD that's a sub-slice of the given series.

    Returns a TimeSeriesRDD that's a sub-slice of the given series.

    start

    The start date the for slice.

    end

    The end date for the slice (inclusive).

  116. def sortBy[K](f: ((K, Vector)) ⇒ K, ascending: Boolean, numPartitions: Int)(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[(K, Vector)]

    Definition Classes
    RDD
  117. def sparkContext: SparkContext

    Definition Classes
    RDD
  118. def subtract(other: RDD[(K, Vector)], p: Partitioner)(implicit ord: Ordering[(K, Vector)]): RDD[(K, Vector)]

    Definition Classes
    RDD
  119. def subtract(other: RDD[(K, Vector)], numPartitions: Int): RDD[(K, Vector)]

    Definition Classes
    RDD
  120. def subtract(other: RDD[(K, Vector)]): RDD[(K, Vector)]

    Definition Classes
    RDD
  121. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  122. def take(num: Int): Array[(K, Vector)]

    Definition Classes
    RDD
  123. def takeOrdered(num: Int)(implicit ord: Ordering[(K, Vector)]): Array[(K, Vector)]

    Definition Classes
    RDD
  124. def takeSample(withReplacement: Boolean, num: Int, seed: Long): Array[(K, Vector)]

    Definition Classes
    RDD
  125. def toDebugString: String

    Definition Classes
    RDD
  126. def toIndexedRowMatrix(nPartitions: Int = 1): IndexedRowMatrix

    Converts a TimeSeriesRDD into a distributed IndexedRowMatrix, useful to take advantage of Spark MLlib's statistic functions on matrices in a distributed fashion.

    Converts a TimeSeriesRDD into a distributed IndexedRowMatrix, useful to take advantage of Spark MLlib's statistic functions on matrices in a distributed fashion. This is only supported for cases with a uniform time series index. See http://spark.apache.org/docs/latest/mllib-data-types.html for more information on the matrix data structure

    nPartitions

    number of partitions, default to -1, which represents the same number as currently used for the TimeSeriesRDD

    returns

    an equivalent IndexedRowMatrix

  127. def toInstants(nPartitions: Int = 1): RDD[(ZonedDateTime, Vector)]

    Essentially transposes the time series matrix to create an RDD where each record contains a single instant in time and all the values that correspond to it.

    Essentially transposes the time series matrix to create an RDD where each record contains a single instant in time and all the values that correspond to it. Involves a shuffle operation.

    In the returned RDD, the ordering of values within each record corresponds to the ordering of the time series records in the original RDD. The records are ordered by time.

  128. def toInstantsDataFrame(sqlContext: SQLContext, nPartitions: Int = 1): DataFrame

    Performs the same operations as toInstants but returns a DataFrame instead.

    Performs the same operations as toInstants but returns a DataFrame instead.

    The schema of the DataFrame returned will be a java.sql.Timestamp column named "instant" and Double columns named identically to their keys in the TimeSeriesRDD

  129. def toJavaRDD(): JavaRDD[(K, Vector)]

    Definition Classes
    RDD
  130. def toLocalIterator: Iterator[(K, Vector)]

    Definition Classes
    RDD
  131. def toObservationsDataFrame(sqlContext: SQLContext, tsCol: String = "timestamp", keyCol: String = "key", valueCol: String = "value"): DataFrame

    Returns a DataFrame where each row is an observation containing a timestamp, a key, and a value.

  132. def toRowMatrix(nPartitions: Int = 1): RowMatrix

    Converts a TimeSeriesRDD into a distributed RowMatrix, note that indices in a RowMatrix are not significant, and thus this is a valid operation regardless of the type of time index.

    Converts a TimeSeriesRDD into a distributed RowMatrix, note that indices in a RowMatrix are not significant, and thus this is a valid operation regardless of the type of time index. See http://spark.apache.org/docs/latest/mllib-data-types.html for more information on the matrix data structure

    returns

    an equivalent RowMatrix

  133. def toString(): String

    Definition Classes
    RDD → AnyRef → Any
  134. def top(num: Int)(implicit ord: Ordering[(K, Vector)]): Array[(K, Vector)]

    Definition Classes
    RDD
  135. def treeAggregate[U](zeroValue: U)(seqOp: (U, (K, Vector)) ⇒ U, combOp: (U, U) ⇒ U, depth: Int)(implicit arg0: ClassTag[U]): U

    Definition Classes
    RDD
  136. def treeReduce(f: ((K, Vector), (K, Vector)) ⇒ (K, Vector), depth: Int): (K, Vector)

    Definition Classes
    RDD
  137. def union(other: RDD[(K, Vector)]): RDD[(K, Vector)]

    Definition Classes
    RDD
  138. def unpersist(blocking: Boolean): TimeSeriesRDD.this.type

    Definition Classes
    RDD
  139. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  140. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  141. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  142. def withIndex(newIndex: DateTimeIndex): TimeSeriesRDD[K]

    Returns a TimeSeriesRDD rebased on top of a new index.

    Returns a TimeSeriesRDD rebased on top of a new index. Any timestamps that exist in the new index but not in the existing index will be filled in with NaNs.

    newIndex

    The DateTimeIndex for the new RDD

  143. def zip[U](other: RDD[U])(implicit arg0: ClassTag[U]): RDD[((K, Vector), U)]

    Definition Classes
    RDD
  144. def zipPartitions[B, C, D, V](rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D])(f: (Iterator[(K, Vector)], Iterator[B], Iterator[C], Iterator[D]) ⇒ Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[D], arg3: ClassTag[V]): RDD[V]

    Definition Classes
    RDD
  145. def zipPartitions[B, C, D, V](rdd2: RDD[B], rdd3: RDD[C], rdd4: RDD[D], preservesPartitioning: Boolean)(f: (Iterator[(K, Vector)], Iterator[B], Iterator[C], Iterator[D]) ⇒ Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[D], arg3: ClassTag[V]): RDD[V]

    Definition Classes
    RDD
  146. def zipPartitions[B, C, V](rdd2: RDD[B], rdd3: RDD[C])(f: (Iterator[(K, Vector)], Iterator[B], Iterator[C]) ⇒ Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[V]): RDD[V]

    Definition Classes
    RDD
  147. def zipPartitions[B, C, V](rdd2: RDD[B], rdd3: RDD[C], preservesPartitioning: Boolean)(f: (Iterator[(K, Vector)], Iterator[B], Iterator[C]) ⇒ Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[C], arg2: ClassTag[V]): RDD[V]

    Definition Classes
    RDD
  148. def zipPartitions[B, V](rdd2: RDD[B])(f: (Iterator[(K, Vector)], Iterator[B]) ⇒ Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[V]): RDD[V]

    Definition Classes
    RDD
  149. def zipPartitions[B, V](rdd2: RDD[B], preservesPartitioning: Boolean)(f: (Iterator[(K, Vector)], Iterator[B]) ⇒ Iterator[V])(implicit arg0: ClassTag[B], arg1: ClassTag[V]): RDD[V]

    Definition Classes
    RDD
  150. def zipWithIndex(): RDD[((K, Vector), Long)]

    Definition Classes
    RDD
  151. def zipWithUniqueId(): RDD[((K, Vector), Long)]

    Definition Classes
    RDD

Deprecated Value Members

  1. def filterWith[A](constructA: (Int) ⇒ A)(p: ((K, Vector), A) ⇒ Boolean): RDD[(K, Vector)]

    Definition Classes
    RDD
    Annotations
    @deprecated
    Deprecated

    (Since version 1.0.0) use mapPartitionsWithIndex and filter

  2. def flatMapWith[A, U](constructA: (Int) ⇒ A, preservesPartitioning: Boolean)(f: ((K, Vector), A) ⇒ Seq[U])(implicit arg0: ClassTag[U]): RDD[U]

    Definition Classes
    RDD
    Annotations
    @deprecated
    Deprecated

    (Since version 1.0.0) use mapPartitionsWithIndex and flatMap

  3. def foreachWith[A](constructA: (Int) ⇒ A)(f: ((K, Vector), A) ⇒ Unit): Unit

    Definition Classes
    RDD
    Annotations
    @deprecated
    Deprecated

    (Since version 1.0.0) use mapPartitionsWithIndex and foreach

  4. def mapPartitionsWithContext[U](f: (TaskContext, Iterator[(K, Vector)]) ⇒ Iterator[U], preservesPartitioning: Boolean)(implicit arg0: ClassTag[U]): RDD[U]

    Definition Classes
    RDD
    Annotations
    @DeveloperApi() @deprecated
    Deprecated

    (Since version 1.2.0) use TaskContext.get

  5. def mapPartitionsWithSplit[U](f: (Int, Iterator[(K, Vector)]) ⇒ Iterator[U], preservesPartitioning: Boolean)(implicit arg0: ClassTag[U]): RDD[U]

    Definition Classes
    RDD
    Annotations
    @deprecated
    Deprecated

    (Since version 0.7.0) use mapPartitionsWithIndex

  6. def mapWith[A, U](constructA: (Int) ⇒ A, preservesPartitioning: Boolean)(f: ((K, Vector), A) ⇒ U)(implicit arg0: ClassTag[U]): RDD[U]

    Definition Classes
    RDD
    Annotations
    @deprecated
    Deprecated

    (Since version 1.0.0) use mapPartitionsWithIndex

  7. def toArray(): Array[(K, Vector)]

    Definition Classes
    RDD
    Annotations
    @deprecated
    Deprecated

    (Since version 1.0.0) use collect

Inherited from RDD[(K, Vector)]

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped